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Abstract: Background: Radiotherapy (RT) is a mainstay treatment for prostate cancer (PC).
Accurate delineation of organs at risk (OARs) is crucial for optimizing the therapeutic
window by minimizing side effects. Manual segmentation is time-consuming and prone to
inter-operator variability. This study investigates the performance of Limbus® Contour®

(LC), a deep learning-based auto-contouring software, in delineating pelvic structures
in PC patients. Methods: We evaluated LC’s performance on key structures (bowel bag,
bladder, rectum, sigmoid colon, and pelvic lymph nodes) in 52 patients. We compared
auto-contoured structures with those manually delineated by radiation oncologists using
different metrics. Results: LC achieved good agreement for the bladder (median Dice: 0.95)
and rectum (median Dice: 0.83). However, limitations were observed for the bowel bag
(median Dice: 0.64) and sigmoid colon (median Dice: 0.6), with inclusion of irrelevant
structures. While the median Dice for pelvic lymph nodes was acceptable (0.73), the
software lacked sub-regional differentiation, limiting its applicability in certain other
oncologic settings. Conclusions: LC shows promise for automating OAR delineation in
prostate radiotherapy, particularly for the bladder and rectum. Improvements are needed
for bowel bag, sigmoid colon, and lymph node sub-regionalization. Further validation
with a broader and larger patient cohort is recommended to assess generalizability.

Keywords: auto-contouring; organs at risk; deep learning; segmentation; prostate cancer;
pelvic lymph nodes; Limbus® Contour

1. Introduction
Prostate cancer is the most common malignancy in the male population and consumes

a significant number of resources in Radiation Oncology departments [1–3]. In Italy,
prostate cancer accounts for over 20% of all cancers diagnosed in men over the age of 50. In
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2022, there were approximately 40,500 new cases, while in 2023, the number increased to
41,100 and in 2024 it was 40,192. In total, 8200 men died because of prostate cancer in Italy
in 2022 [4].

The treatment of prostate cancer must be personalized, considering the stage and
aggressiveness of the disease, as well as the patient’s life expectancy and the presence
of any comorbidities that may increase the risk of mortality compared to the prostate
cancer itself.

Radiotherapy (RT) is a therapeutic option for the treatment of prostate cancer with
curative intent [5–12]. Equally radical prostatectomy (RP), involving surgical removal
of the prostate, vas deferens, and seminal vesicles (with or without lymphadenectomy),
is a common treatment for prostate cancer. However, even after RP, biochemical recur-
rence of disease (BCR) occurs in 27–53% of patients [13,14]. Adjuvant radiotherapy (ART)
following RP has demonstrated a 50% reduction in BCR risk for patients with high-risk
features [15–17]. A recent large retrospective study further emphasizes the benefit of
ART in patients with positive lymph nodes (pN1), a high Gleason score (pathological GS
8–10), and extra prostatic extension (pT3/pT4), showing a reduction in all-cause mortality
rates [18]. The salvage setting after RP, where cancer recurs, has become a crucial area of
research. The ARTISTIC meta-analysis, encompassing trials like RADICALS-RT, TROG
08.03/ANZUP RAVES, and GETUG-AFU 17, supports the PSA-based approach and the
role of salvage radiotherapy (SRT) in patients who were previously considered candidates
for ART [19–22]. The RTOG 0534 trial showed a marginal benefit of prophylactic pelvic
nodal irradiation (PNRT or ENRT) [23]. Consequently, RT plays an essential role in prostate
cancer management in both radical and salvage setting by delivering a targeted high dose
to eradicate cancerous cells while minimizing harm to surrounding healthy tissues. This
delicate balance is crucial for mitigating both short- and long-term side effects. However, a
major bottleneck in the treatment planning process is the manual segmentation of target
volumes and organs at risk (OARs) on Computed Tomography (CT) scans [24]. Historically,
manual segmentation of structures on 3D anatomical images, typically CT scans, has been
performed by clinical experts. While this ensures expert review, it is also a very time-
consuming process. Literature reports mean manual segmentation times for head and neck
cases ranging significantly, from 28.5 min up to 3 h, depending on the specific structures
being delineated. This time-intensive nature, coupled with the inherent susceptibility of
manual segmentation to inter- and intra-observer variability, has driven the increasing
adoption of automatic techniques over the past decade [25].

While manual contouring of organs at risk (OARs) and clinical target volumes (CTVs)
is an essential component of radiotherapy (RT) planning, its time-consuming nature and re-
liance on staff availability contribute substantially to RT treatment planning lead times [26].

Artificial Intelligence (AI) can provide a powerful contribution to a lot of human-
dependent steps in RT, considering that human participation is a principal uncertainty
source, potentially impacting on the efficacy of treatments. In particular, the main fields of
applications of AI in RT are the following:

• Lesion and OAR contouring, with data derived from fusions of multimodal imaging:
The accuracy of auto-segmentation is higher for structures that have a high contrast
against their surrounding tissues (lung, eye, bladder), while it is lower in the case of
OARs with small volumes and fuzzy boundaries (optic chiasma). In clinical practice,
manual checking is necessary, with a consideration of the different reference guidelines
of different institutions.

• Treatment Planning: AI can help in augmenting dose map prediction (Dose Volume
Histograms (DVHs) and voxel-based dose prediction) and in supervising and guiding
the optimization process, which usually requires sequential modifications of parame-
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ters such as target coverage, OAR constraints and their priorities, selecting the ones
that need an update and also allowing for procedures of replanning and adaptive RT
to be completed more quickly.

• Patient- and machine-specific quality assurance: The purpose of this is to ensure
consistency between the medical prescription and its delivery, reducing the workload
involved in measuring and analyzing doses using a phantom and in the assessment of
the performances of all devices involved in RT. AI algorithms can also help in relating
the spatial dose to RT outcomes, consenting prognosis predictions and prediction of
the risk of side effects.

A major limitation in the use of AI in RT practice is the lack of regulation, because these
systems do not have 100% accuracy, so human surveillance is essential. Furthermore, the
use of AI could lead to young radiation oncologists dealing with matters beyond their level
of expertise, since they have to face problems and devise solutions, particularly in checking
results. This could cause issues in the advancements made within the discipline [27].

A thorough comprehension of these technologies is essential to warranting the op-
timal use of these tools. Advanced AI techniques, like Convolutional Neural Networks
(CNNs) with high-performance predictions for complex problems, lead to the so-called
“black box” problem: a lack of transparency and knowledge about the functioning of the
machine learning models. This cultural barrier can dampen the faith in AI solutions held
by health professionals. A technology known as Explainable AI (XAI) has the objective of
clarifying how predictions are made, offering an insight into the internal mechanisms of
these algorithms [28].

There is a real need for effective Uncertainty Quantification (UQ) methods, which
could incentivize clinicians’ confidence in and integration of AI models into clinical practice.
UQ methods, both for epistemic and aleatoric uncertainties, are well established in com-
puter science and are useful for the characterization of the limits of AI tools, but they are
only in the early stages in their applications in healthcare. In the auto-segmentation field,
methods such as conformal prediction can help in flagging cases with a low probability of
correct segmentation and which need further human intervention [29].

Among the automated approaches, atlas-based segmentation methods have gained
popularity in commercial systems. These methods typically involve selecting one or more
pre-segmented atlases and deforming them to match the patient’s anatomy to generate
contours. Various methods exist for selecting the best atlas or combination of atlases [25].

Studies have evaluated atlas-based auto-segmentation for different anatomical sites
and structures, including head and neck OARs and prostate OARs. For example, research
has assessed atlas-based auto-segmentation tools for the head and neck OARs, pre-clinically
and clinically validating them for multiple target volumes and normal tissues like swallow-
ing and mastication structures [30].

More recently, advances in machine learning, particularly deep learning, have led to
the development of sophisticated automated segmentation and planning tools [26,30–34].

Deep learning algorithms, such as CNNs and Fully Convolutional Networks (FCNs),
have shown promise in segmenting anatomical structures [30].

Examples include deep learning for the clinically applicable segmentation of head and
neck anatomy and the automated CT segmentation of prostate cancer anatomy [31,35].

Traditionally, the auto-segmentation approach was based on intensity analysis (based
on differences in imaging intensity among different tissues), shape modeling (based on the
typical anatomical aspect of the structures of interest), and atlas-based techniques (based on
a database of previously delineated structures), derived from retrospective peer reviewed
treatment contours. They required substantial manual editing. The advent of deep learning
models, especially CNNs, has led to a paradigm shift in auto-segmentation approaches.
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Indeed, they can handle a wider variety of complex anatomical structures; in particular,
CNNs can extract hierarchical features from medical images through layers of learned
convolutional filters [36].

Machine learning and AI applications are rapidly finding their way into the radiother-
apy workflow.

Auto-segmentation solutions, particularly those leveraging deep learning, are being
actively explored to alleviate these burdens, with the latter demonstrating improved
accuracy over atlas-based techniques [31]. Despite this potential, the translation of deep
learning-based auto-segmentation into routine clinical practice has been slow [3]. This
delay in its adoption is likely associated with the current lack of comprehensive knowledge
and standardized guidelines for the effective commissioning and implementation of these
machine learning tools [3,32]. Moreover, this time-consuming and subjective task can lead
to both inter and intra-variability between healthcare professionals.

Radici et al. reported time savings across multiple sites using Limbus Contour®, with
the maximum advantages seen in head and neck cancer (65%-time savings), though time
reductions for prostate (44%), breast (25%), and rectum (38%) have also been reported [37].

The recent emergence of AI used in medicine has also led to innovations in radiation
oncology, offering significant advancements in treatment precision and workflow [38].
Recent advancements in AI have led to the development of auto-segmentation algorithms
capable of delineating anatomical structures with a precision that rivals the expertise of
human radiation oncologists. Watkins et al. explored the efficiency gains achievable with
unedited AI-generated contours in total marrow irradiation, highlighting the potential of AI
to achieve a 100% improvement in efficiency compared to traditional manual methods [39].
Another study reported that deep learning-based auto-segmentation reduces contouring
time and improves clinical workflow efficiency in the treatment of cervical cancer [40]. A
study focusing on the auto-segmentation of target volumes and OARs in pediatric cancer
patients emphasized the importance of both accuracy and time efficiency in this vulnerable
group. The study highlighted the potential of AI to strike a delicate balance between
effective treatment and the preservation of normal tissue, which is crucial for minimizing
potential growth-related complications in young patients [41]. Prior research suggests that
AI can perform radiation contouring with a precision comparable to, if not exceeding, that
of human oncologists. However, the strongest evidence of AI’s efficacy lies in its ability to
replicate the nuanced expertise of human practitioners. In the AI conference co-hosted by
the Embassy of the Republic of Korea to the UAE, the Department of Health Abu Dhabi,
and G42 Healthcare, comparative analysis was conducted, during which human radiation
oncologists and the AI software Limbus® AI were tasked with contouring the axilla and
internal mammary nodal chain from CT scans of a post-lumpectomy breast cancer patient.
Only a small proportion of healthcare professionals and AI experts could correctly identify
the AI-generated contour [42].

Auto-segmentation, facilitated by AI, holds promise for streamlining the manual
contouring process. Studies suggest that AI can not only enhance efficiency but also
reduce discrepancies arising from clinician interpretations [24,31]. Deep learning-based
auto-segmented contours (DCs) have demonstrated remarkable accuracy, closely matching
that of manual contours and surpassing that of traditional atlas-based methods [24,43]
(Figure 1).
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Figure 1. Comparison between traditional contouring methods used in radiation oncology and
AI-based data contouring. Created in BioRender. Cristiano Grossi. (2025) https://app.biorender.
com/illustrations/681bc74040787bb5138b50f9.

Despite the promising capabilities of AI-powered contouring, widespread clinical
adoption remains limited [32]. Wong et al. reported the impact of DC models in the clinical
workflow at two centers; in a previous study, they also conducted a comparison between
DC and multiple radiation oncologists for central nervous system (CNS), head and neck
(H&N), and prostate OARs and CTVs [24].

Further research is necessary to address the variability observed in the quality of DC
models [33,44]. Rigorous studies are crucial to verify the reliability of specific models before
their full integration into routine clinical practice [34]. This focus on robust validation will
ensure the safe and effective implementation of AI in radiation oncology.

Seeking to streamline the radiotherapy workflow, in our institution, we investigated
the clinical implementation of a commercial deep learning-based auto-contouring software.
Wong et al. in 2020 reported on investigated CTVs in HN cancer and prostate gland cancer,
but nonpelvic CTVs were included in their analysis [24].

Ethical concerns need to be considered in the development phase of AI tools. Ethical
considerations in AI applications in healthcare call attention to issues such as security and
privacy, the evaluation of AI models’ reliability, the appropriate settings of applications
of AI models, the allocation of responsibilities and the need for human monitoring of
the results obtained with AI processes. Instruments for systematic ethical assessments of
generative AI in healthcare have been developed, such as the TREGAI checklist, based on
nine generally recognized ethical principles [45].

In this study, we aimed to assess the software’s impact on contouring key pelvic
structures, especially major pelvic lymph nodes, but also including the bowel, bladder,
rectum, and sigmoid colon, within a homogeneous population with a diagnosis of PC. This
study represents the first evaluation of major pelvic lymph node contouring, and may act
as a valuable reference for other oncological diseases, including rectal cancer, anal canal
cancer, and gynecological malignancies.

https://app.biorender.com/illustrations/681bc74040787bb5138b50f9
https://app.biorender.com/illustrations/681bc74040787bb5138b50f9
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2. Materials and Methods
To streamline the radiotherapy workflow at our institutions, we investigated the

clinical implementation of Limbus Contour software (Limbus AI Inc., Regina, SK, Canada,
version 1.7.1) [46]. This study assessed the software’s impact on the contouring of key
pelvic structures, including the bowel, the bladder, the rectum, the sigmoid colon, and
major pelvic lymph nodes.

For this study, we investigated the consistency and the geometric reliability of LC in
patients with PC and pelvic lymph node involvement. Our analysis deliberately excluded
the prostate gland, because previous authors previously demonstrated the accuracy of this
method for delineating the whole prostate gland [47]. Our focus was on structures located
outside the prostate gland.

We chose to evaluate pelvic structures due to their high inter-patient variability. This
characteristic makes them a good target for testing the software’s robustness in handling
anatomical variations. Traditional segmentation methods, like atlas-based approaches,
rely on pre-segmented image databases, which often require significant editing [25,43].
AI-powered contouring tools, like Limbus Contour, aim to overcome these limitations by
offering quicker and more accurate delineations of target volumes and OARs. This has
the potential to significantly improve patient outcomes through more precise radiation
delivery [37].

We retrospectively analyzed data from 52 patients, treated at Mauriziano Umberto
I Hospital, Turin, and “Umberto Parini” Hospital, Aosta, Italy, diagnosed with PC, com-
prising 40 patients with locally advanced PC and 12 patients with recurrent PC, treated
between 2018 and 2024. All patients received either radical radiotherapy or adjuvant
radiotherapy using the Volumetric Modulated Arc Therapy-Image Guided Radiotherapy
(VMAT-IGRT) technique. All patients provided written informed consent approved by our
Internal Institutional Review Board.

2.1. Software Description

In this study, we employed LC version 1.7.1, a commercially available auto-contouring
software powered by deep learning algorithms. This advanced tool utilizes deep CNNs,
with each anatomical structure being assigned a dedicated model specifically tailored for
its unique features. These models are based on the widely adopted U-net architecture, a
neural network design recognized for its effectiveness in biomedical image segmentation
tasks [30,48,49].

The training process for LC models draws from an extensive and diverse array of
imaging datasets. These include both publicly accessible datasets and proprietary collec-
tions obtained through collaborations with a range of medical institutions. Together, these
sources form a robust and heterogeneous foundation for training the models, enhancing
their generalizability and performance across different patient populations and imaging
conditions [50–59]. The number of scans used to train each model typically ranges from sev-
eral hundred to several thousand, ensuring that each model is supported by a substantial
volume of learning data, which contributes to its accuracy and reliability.

To maintain high standards of performance and clinical relevance, Limbus AI imple-
ments a stringent dual-phase validation strategy. The first phase is an internal validation,
where the software’s auto-generated contours are systematically compared against expert-
drawn annotations on a designated test dataset. This process provides an initial benchmark
of the model’s precision and segmentation accuracy. The second phase involves external
validation through peer-reviewed publications, where independent studies assess both
the qualitative and quantitative performance of the models. These studies also explore the
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software’s ability to enhance and expedite clinical workflows, thereby supporting its utility
in real-world radiotherapy planning scenarios [24,50].

2.2. Contouring Process and Data Analysis

In this study, we assessed the level of concordance between organ delineations auto-
matically generated by the Limbus AI software and those manually contoured by three
experienced radiation oncologists using the RayStation System (RaySearch Laboratories,
Stockolm, Sweden) as the treatment planning system (TPS), with the latest version available
in 2024. The treatment plans and contours from our institutions were retrieved for analysis.
The anatomical structures selected for delineation and analysis included key OARs and
target volumes relevant to pelvic radiotherapy, specifically the bowel bag, bladder, rectum,
and sigmoid colon, as well as the pelvic lymph nodes, which were contoured as part of the
CTV. These structures were chosen due to their clinical importance in treatment planning
and the potential variability in manual contouring. For each patient case, a duplicate set of
the original manually defined structures was created within the Limbus software. These
auto-generated contours were designed to mirror the original anatomical regions but were
automatically labeled with a “Limbus” suffix. This labeling strategy was employed to
clearly distinguish between the auto-contoured structures and those manually delineated
by the radiation oncologists, ensuring clarity during subsequent analyses.

These new Regions of Interest (ROIs) were then exported back to RayStation for
analysis using custom Python scripting (version 3.12) in terms of the following metrics:

1. Volume: The absolute volume of each ROI expressed in cubic centimeters (cc).
2. Dice Coefficient (DC): A measure of conformity, reflecting the spatial overlap between

two delineated volumes. A value of 1 indicates perfect overlap.
3. Precision: The proportion of voxels identified by Limbus that truly belong to the OAR,

reflecting the accuracy of inclusion. A value of 1 indicates only true positives (with no
irrelevant structures included).

4. Sensitivity: The proportion of voxels in the true OAR that are correctly identified by
Limbus, reflecting the completeness of delineation. A value of 1 indicates all true
positives (no missed voxels).

5. Specificity: The proportion of voxels outside the true OAR that are correctly excluded
by Limbus, reflecting the ability to avoid irrelevant structures. A value of 1 indicates
only true negatives (with no false positives included).

6. Mean Distance to Agreement (Mean DA): The average distance between the surfaces of
structures identified in both delineations and those identified by only one delineation.
A value of 0 indicates perfect agreement in surface location.

7. Maximum Distance to Agreement (Max DA): The largest distance between any cor-
responding surface points in the two delineations. A value of 0 indicates perfect
spatial overlap.

The following sections will provide detailed explanations of each metric (precision,
sensitivity, specificity, Mean DA, and Max DA) in the context of organ delineation and their
clinical significance.

3. Results
Fifty-two patients were included in this retrospective analysis. Table 1 summarizes

the dosimetric evaluation of organ delineation using all metrics listed previously.
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Table 1. The median average of all dosimetric data evaluated for each structure.

CTV Bowel Bladder Rectum Sigmoid

Diff. Vol (cc) −56.82
(−205.96; 185.94)

−417.25
(−1500.57; 5168)

−0.09
(−22.27; 14.58)

3.05
(−18.91; 23.73)

−13.68
(−198.91; 82.34)

Dice 0.73
(0.53; 0.84)

0.62
(0.36; 1)

0.97
(0.77; 1)

0.87
(0.57; 1)

0.60
(0.2; 1)

Precision 0.58
(0.36; 0.73)

0.45
(0.22; 1)

0.94
(0.63; 1)

0.76
(0.4; 1)

0.44
(0.11; 1)

Sensitivity 0.79
(0.57; 0.97)

0.65
(0.24; 1)

0.97
(0.76; 1)

0.86
(0.61; 1)

0.85
(0.22; 1)

Specificity 0.65
(−0.2; 0.96)

0.83
(−1.08; 1)

0.98
(0.72; 1)

0.91
(0.09; 1)

0.41
(−6.93; 1)

Mean DA 0.39
(0.18; 0.97)

1.2
(0.01; 3.98)

0.07
(0; 0.35)

0.15
(0; 1)

0.73
(0; 3.43)

Max DA 3.25
(1.76; 6.65)

8.39
(0.02; 16.51)

0.66
(0.01; 2.26)

1.3
(0.01; 5.52)

5.44
(0.01; 17.09)

CTV achieved good agreement with clinician contours, with a median Dice of 0.73 and
a median volume difference of −56.82 cc. However, the model’s precision for CTV segmen-
tation was lower (0.58), indicating a higher rate of false positives. In some cases, non-target
structures like the bowel were included in the segmentation. The sensitivity was better
than specificity (0.79 and 0.65, respectively). These findings suggest that, while the model
can accurately delineate the CTV, in some cases, false structures were included in CTV, so
further refinement is necessary to improve the precision of segmenting this structure. In
contrast, delineation of the bowel bag using LC resulted in a lower median Dice coefficient
(0.60) and a larger median volume difference −417.25 cc. This discrepancy likely arises
from the excessively large LC margins incorporating the neighboring structures within
the bag, as reflected by the lower precision (0.45) value for the bowel bag segmentation.
Specificity reached an unexpectedly high value (0.83).

Bladder delineation achieved excellent agreement, with the highest median Dice (0.97)
among the OARs evaluated (Figure 2). Volume differences were also minimal (median:
−0.09 cc). A similarly excellent result was also obtained for precision, specificity, and
sensitivity (0.94, 0.97, and 0.98, respectively). The mean DA achieved was 0.07, with a
maximum DA of 0.66.

Similarly to the outcomes for the bowel bag segmentation, sigmoid delineation using
LC proved challenging. The median Dice value for the sigmoid was 0.6, and the median
volume difference was −13.68 cc. Precision was confirmed to be very poor, at 0.44, the
worst of all analyzed structures. Similarly, the specificity was 0.41. We frequently observed
inconsistencies between the LC-defined cranial margin of the sigmoid and the clinician’s
delineation. In some cases, a gap existed between the sigmoid and the rectal Limbus
Contour. In contrast, the rectum exhibited good agreement with a median Dice value of
0.76 and a negligible median volume difference, 3.05 cc. The precision value was 0.76, and
the sensitivity was 0.86; therefore, LC did not miss many voxels.
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Figure 2. Variability range of Dice distribution for the CTV and OARs analyzed. The bladder
achieved the best results, with the least differences, while the sigmoid had the worst results, with
wide variability and the lowest median Dice. Similar results were obtained with the bowel. The
rectum had excellent results. The CTV reached an acceptable value for a short while.

4. Discussion
The present study investigated the clinical implementation of a commercial deep

learning-based auto-contouring software (Limbus Contour, LC, version 1.8) for PC patients
with pelvic lymph node involvement in a radiation therapy workflow.

The primary aim was to evaluate the software’s impact on the contouring of key pelvic
structures, with a particular focus on major pelvic lymph nodes, alongside the bowel bag,
bladder, rectum, and sigmoid colon (Figure 3).

To the best of our knowledge, this research represents the first evaluation of major
pelvic lymph node contouring using an auto-contouring software, acting as a potentially
valuable reference for other pelvic malignancies.

Previous studies have extensively evaluated the performance of auto-segmentation
software, including deep learning models, for commonly contoured organs-at-risk (OARs)
such as the bladder, rectum, and prostate, often demonstrating excellent results [37,60,61].

Van Dijk et al. classified vDSC (volumetric Dice similarity coefficient) scores into
good (vDSC > 0.8), good–intermediate (0.7 < vDSC < 0.8), intermediate (0.6 < vDSC < 0.7),
intermediate–poor (0.5 < vDSC < 0.6), and poor (vDSC < 0.5) [62]. However, it is important
to remember that vDSC scores are relative; a score of 0.8 signifies high accuracy for small
organs like optic nerves but indicates lower accuracy for larger structures such as the bowel
or lungs. While we observed a good median Dice coefficient for the CTV (0.73), with the
value generally considered clinically acceptable being around 0.72, according to previous
studies [61], a major limitation exists. Unlike head and neck applications where lymph
node sub-regions are identified and contoured separately, LC does not generate different
structures for iliac, obturator, presacral, or inguinal lymph nodes and does not contour
inguinal or lombo-aortic lymph nodes. This hinders its applicability in gynecological
and gastrointestinal cancers, in which these important lymph node stations are absent.
However, these settings are beyond the scope of our investigation.
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Figure 3. Orange CTV made by radiation oncologists, Red CTV made by Limbus; Blue Bowel made by
radiation oncologists, Purple Bowel made by Limbus; Yellow Bladder made by radiation oncologists,
Orange Bladder made by Limbus; Pink Rectum made by radiation oncologists, Light blue Rectum
made by Limbus; Olive sigmoid made by radiation oncologists, Turquoise sigmoid made by Limbus.
Orange line: CTV contoured by radiation oncologists. Red line: CTV contoured by LC. Blue bowel:
bowel contoured by radiation oncologists. Purple bowel: bowel contoured by LC. Yellow bladder:
contoured by radiation oncologists. Orange bladder: contoured by LC. Pink rectum: contoured by
radiation oncologists. Light blue rectum: contoured by LC. Olive sigmoid: contoured by radiation
oncologists. Turquoise sigmoid: contoured by LC.

Despite the strong performance of AI on many OARs, it is crucial to note that certain
structures or specific regions often require significant manual editing. In a study by Cha
et al. focusing on prostate Stereotactic Body Radiation Therapy (SBRT), 33% of the auto-
contours required major, clinically significant edits based on physician surveys. While
OARs generally required minimal to moderate changes, structures like the CTV in the
pelvic region (specifically the prostate and seminal vesicles in the study mentioned) and
the penile bulb had a greater necessity for significant modification [31].

Wong et al., evaluating deep learning-based auto-contours, reported that for bladder
and rectum OARs, the average editing scores were 2 or less on a five-point scale (where
1 means minimal editing) [24].

Similarly, Zabel et al. compared manual contouring (MANpreRO) with atlas-based
(ATLASpreRO) and deep learning-based (DEEPpreRO, using Limbus Contour) auto-
contouring for the bladder and rectum in prostate cancer patients. Their findings indicated
that DEEPpreRO contours showed greater geometric similarity to manual contours, with
significantly higher DSC values and a lower Mean Surface Distance (MSS) for both struc-
tures [60].

Radici et al., using Limbus Contour for various sites, reported an average DSC of
0.72 across all analyzed structures [37].

The performance of LC varied across the different OARs, as can be seen in Figure 2.
Bladder delineation achieved excellent agreement, with a high median Dice coefficient
(0.97) and good precision (0.94), specificity (0.97), and sensitivity (0.98). This aligns with
previous findings in several studies [60,63]; Kim et al. reported a lower Dice value, but they
tested LC version 1.5 and 1.6 only on 10 pelvic patients [64]. In an earlier atlas-based study
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carried out in 2016, Wong et al. [65] reported median DSC values of 0.90 for the bladder,
0.77 for the rectum, and 0.84 for the prostate with the recommended settings. These values
generally support the potential of deep learning to achieve high geometric similarity for
common pelvic OARs.

However, bowel delineation presented challenges. The median Dice coefficient (0.62)
was lower than that for the bladder, and the precision (0.45) was particularly poor, indicating
the inclusion of irrelevant structures. This finding aligns with Radici et al. [37], who
reported discrepancies between manual and automatic bowel segmentation. Doolan et al.
analyzed only 20 prostate patients with five commercial AI auto-segmentation devices
and reported a very low dice value (vDSC 0.59−0.76) for the bowels, but they did not test
LC [66].

LC offers the opportunity to choose between single loops or whole-bowel delineation.
In our study, whole-bowel volumes were significantly larger than manually contoured
ones, potentially impacting treatment planning.

Although LC’s performance was evaluated for abdominal OARs in a recent study, the
bowel was not included in our analysis [67].

Similar results were observed for the sigmoid. While the median Dice coefficient
(0.6) suggests some overlap, the low precision (0.44) indicates the frequent inclusion of
non-sigmoid structures. In further detail, discrepancies in manual and LC delineation of
the rectosigmoid junction were frequently observed.

LC’s capabilities regarding rectum contouring were totally different. Our study re-
ported a Dice coefficient of 0.87a, value close to that (0.86) reported in previous research
by Zabel et al. [60] and Oktay et al. (0.90) [63], indicating good overlap with manual
contours. However, our study suggests that LC may exhibit greater difficulty with sigmoid
contouring compared to contouring of the rectum, a limitation seen with many other AI
auto-segmentation softwares [66]. This aligns with our findings of a lower Dice coefficient
and lower precision for the sigmoid.

Despite the difficulties in precisely quantifying the time savings, perceived utility and
observed improvements in workflow efficiency are frequently reported. Zabel et al. found
that deep learning auto-contouring (using Limbus Contour) for the bladder and rectum
significantly reduced the initial contour generation time (1.4 min for DEEP vs. 10.9 min for
manual) without significantly increasing the time required for physician editing compared
to manual methods (4.7 min for DEEP editing vs. 4.1 min for manual editing) [61].

This study has limitations, including its retrospective design and limited sample
size. Further research with a larger and more diverse patient population is necessary
for generalizability. Future studies should investigate the potential of AI algorithms to
accurately delineate not only pelvic lymph nodes in various cancer types, but also the bowel
and sigmoid. This could significantly improve the efficiency of radiotherapy planning and
reduce the workload for radiation oncologists.

Another limitation is the lack of a dedicated dosimetric analysis to assess the impact
of using auto-contours instead of manual contours in terms of DVH metrics.

The most recent version of LC, version 1.8, can contour new structures for example
inguinal lymph nodes station, but it cannot contour other structures for example lombo-
aortic lymph nodes yet. Furthermore, differentiation of pelvic lymph nodes (iliac, obturator,
and presacral), such as those in the head and neck cancer setting, is not permitted.

Overall, this study provides valuable insights into the potential and limitations of
using LC as a supporting instrument for pelvic structure delineation in radiotherapy.
Accurate comparison with studies in the previously published literature is inherently
difficult. This is due to variations in the definition of “gold-standard” manual contours,
differences in arbitration and consensus-building processes, variations in the datasets used
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(including patient demographics, disease sites, stages, and tumor types), diverse scanning
parameters and image devices, and different labeling protocols [30].

Quantifying time savings accurately in a real-world clinical setting remains challenging.

5. Conclusions
In conclusion, the findings from this study, supported by the growing body of evidence

in existing research, demonstrate the capability of deep learning approaches to achieve high-
quality auto-segmentation for radiotherapy, often reaching performance levels comparable
to that of human experts for common OARs. The evaluation of Limbus Contour, particularly
for pelvic structures, confirms its potential utility in the clinical workflow by reducing
the initial contouring burden and providing suitable starting points for required edits.
While significant progress has been made, particularly for well-defined OARs, challenges
remain in achieving consistent accuracy for all structures and in precisely quantifying the
impact on clinical workflow efficiency. Continued refinement of AI models, addressing
areas of frequent editing, establishing clinical consensus on contouring protocols, and
providing adequate training and robust QA frameworks are necessary steps to maximize
the benefits of auto-segmentation in radiotherapy and improve consistency and safety in
clinical practice. These challenges require further development and validation before AI’s
broader clinical adoption.

By overcoming these limitations and exploring LC’s applicability across diverse cancer
types, we can significantly improve the efficiency and precision of treatment planning in
the future. Ultimately, this translates to better patient outcomes in cancer care. Continued
advancements in AI-driven technologies hold immense potential for optimizing radiotherapy.
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RT Radiotherapy
PC Prostate Cancer
OARs Organs at risk
LC Limbus contour
RP Radical Prostatectomy
BCR Biochemical Recurrence
ART Adjuvant Radiotherapy
GS Gleason Score
SRT Salvage Radiotherapy
PNRT Pelvic Nodal Radiotherapy
ENRT Elective Nodal Radiotherapy
CT Computed Tomography
CTV Clinical target volume
AI Artificial Intelligence
DVHs Dose Volume Histograms
CNNs Convolutional Neural Networks
XAI Explainable AI
UQ Uncertainty Quantification
FCNs Fully Convolutional Networks
DCs Deep Learning-Based Auto-Segmented Contours
CNS Central Nervous System
H&N Head and Neck
VMAT-IGRT Volumetric Modulated Arc Therapy-Image Guided Radiotherapy
TPS Treatment Planning System
ROIs Regions Of Interest
cc Cubic Centimeters
DC Dice Coefficient
DA Distance to Agreement
vDSC Volumetric Dice Similarity Coefficient
SBRT Stereotactic Body Radiation Therapy
DEEP Deep learning auto contour
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